TIRC – Traditional Innovation Research Center

Research proposal by Tommaso Venturini

Abstract

The following pages are meant to describe the Traditional Innovation Research Center project. The Center is proposed as one of the of the research division of the CETCOPRA. As such, it intends to offer theoretical scaffolding and a practical support for scholars wanting to explore the role of traditional technologies in the Information Society. Its ambition is to develop a conceptual toolkit to study, manage and promote the integration of traditional innovation in contemporary technical organizations. To achieve this objective, the Centre will encourage the collaboration between experts in traditional techniques and scholars of modern scientific disciplines.

Partnerships

(The following research institutions and researchers have expressed their interest to participate in the initiative if and when it will start)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipartimento di Discipline della Comunicazione (www.dsc.unibo.it)</td>
<td>Università di Bologna (www.unibo.it)</td>
<td>prof. Pierpaolo Giglioli</td>
</tr>
<tr>
<td>Department of Sociology (sociology.fas.nyu.edu)</td>
<td>New York University (www.nyu.edu)</td>
<td>prof. Harvey Molotch</td>
</tr>
<tr>
<td>Departament de Sociologia i Antropologia Social - Sociologia Ecològica (www.uv.es/sociologia)</td>
<td>Universitat de València (www.uv.es)</td>
<td>prof. Ernest García</td>
</tr>
<tr>
<td>Industrial Engineering and Management Sciences (www.iems.northwestern.edu)</td>
<td>Northwestern University (www.northwestern.edu)</td>
<td>prof. Noshir Contractor</td>
</tr>
</tbody>
</table>
Preliminary remarks – the standstill of modern technology

In the last few years, modern reflection on technology seems to have come to a standstill. On the one hand, the faith in technological progress that has long driven western societies has been brought into question by a rising number of ecological issues. Global warming, biodiversity decline, shortage water, depletion of energetic resources and, in general, all pollution-related emergencies are inexorably undermining every modern technological utopia. The very notion of progress – the idea of an onward movement of our technical history – is challenged by the mounting evidence that new technologies are much less sustainable than old ones (see the paragraph 'background analysis'). On the other hand, nevertheless, no one seems truly willing to quit the benefits of contemporary technological systems: neither developed societies, irreversibly dependent on their technical infrastructures, nor developing societies, understandably fascinated by the advantages of industrialization. No matter how polluted and unsustainable our technologies may prove to be, few people seem to be ready to give up the comforts of modernity. Such is the dilemma of contemporary technology and it does not allow simple solutions. One can not expect further developments of the techno-science to solve the problem, since it has been this very development that created the crisis, and yet, no one can light-heartedly call for a return to traditional technologies, because we know that this would drastically overthrow our way of life. Hence the standstill.

It is worth to notice, however, that this blockage is mainly conceptual and depends largely on how we define our field of our alternatives. As long as we portray modern and traditional technologies as two opposite systems, the dilemma of contemporary technology appears hopeless. If choice is limited to resign or renounce to modernity, then we are in a blind alley. Even if we know that have gone too far with technological growth, we will be never be able to stop until the only alternative is reverting to a past that we don’t remember with much nostalgia. That is why many ecological proposals have failed: they presented contemporary societies with an impossible choice between endangering their future or retreating to their past. If a solution is to be found, it will necessary involve a radical rethink of the modernity/tradition opposition.

The aspiration of the TIRC is to renew the reflection on modern technology by redefining the distinction tradition/modernity. A wide landscape of innovative alternatives is revealed as soon as we stop considering modernity and tradition as two opposite systems and we start conceiving as different technological styles (see the paragraph ‘Hypothesis Framework’). Please note that the adjustment we are proposing is not merely lexical: framing the difference between past and present in terms of ‘technological style’ opens the possibility to combine instead of opposing.
From this perspective, the notion of ‘traditional innovation’ is not an oxymoron: it’s a precise reference to the role that traditional techniques may play in modern society.

To be sure, this is not only a theoretical issue, since the permanence of a conceptual opposition between tradition and modernity discourage the actual work of technical hybridization. Even so, social and economical actors have proved to be much ahead compared with academic reflection and many attempts of conciliation are already underway (see the paragraph ‘Case Studies’). To identify and investigate these examples of contamination between modern and traditional technological styles is the very objective of the TIRC. Still rare and tentative, these hybrids are nonetheless remarkable as they may constitute the vanguard of a new technological approach. Eventually, the idea of conciliating modernity and tradition and combining the best of both may turn out to be an unattainable chimera. However, this is a matter that does deserve to be explored empirically and not merely ruled out on the base of an old theoretical distinction. Time has come to set theory aside and to observe the ferments that shake contemporary technical sector (see the paragraph ‘Disciplinary Tools’). This, we believe, is the only way out from the standstill of modern technology.

Background Analysis – the return of traditional innovation

In the preliminary remarks, we noted that the mounting dissatisfaction with modern technologies has often elicited a renewed interest for traditional techniques. After a long acceleration in the industrialization of production and globalization of markets, symptoms of a reversal begin to appear. From agriculture to gastronomy, from crafts to architecture, everywhere the discontent with modernity is promoting the rediscovery of local and traditional techniques. Artifacts and technologies long regarded as archaic and outdated suddenly begin to enjoy a new vogue. On the one side, consumers searching for quality, sustainability or equity are more and more fascinated by traditional productions. On the other side, traditional communities have demonstrated to be unexpectedly resistant to modernization processes. Though they still have troubles in finding their place in the market, a new demand and offer of tradition technologies are born. The limited visibility traditional innovation gets in dominant trade channels, must not lead to dismiss it as a niche phenomenon. The renaissance of tradition may occur at the margin of the modern mainstream, yet its relevance is not marginal at all. On the contrary, given the increasing dissatisfaction for modern technologies, the retrieval of tradition may prove to be a successful strategy, especially for countries that, such as Italy, can hardly compete on scale economies, but that can rely on a vast cultural heritage. The renewed interest for traditional technologies opens significant strategic opportunities on international markets.
In order to seize these opportunities, however, it is necessary to overcome a number of problem and, first of all, to reconcile modern markets with traditional technologies. Conceiving modernity and tradition as alternative technological styles instead of opposite systems does not mean to deny that there do is some friction between them. After all, it’s undeniable that modernization entailed a progressive marginalization of traditional techniques and that this marginalization still holds despite the mounting dissatisfaction for modernity and interest for tradition. The expression ‘traditional innovation’ is not an oxymoron but it does contain some tension. It is precisely this tension that the TIRC intends to question in order to understand where it comes from and whether it could be overcome. That is the very core of our research, because if this tension derives from some substantial incompatibility, then there is no possibility to integrate traditional innovation in modern collectives (not without a radical distortion of one or the other). Whereas, if the tension between modernity and tradition depends on the contingent configuration of contemporary collectives then hybrids have chance to survive and develop. Again, this is a question that deserves an empirical investigation. However, some hypotheses are worth to be put forward.

Hypotheses Framework – formalization and growth

As we will try to suggest, traditional techniques can be distinguished from modern because of two main differences. The first concerns the way knowledge is conserved and transmitted. In traditional communities all technical knowledge is implicit and embodied. People learn all their skills by apprenticeship in a community of practice, through a process of imitation and trial. As a result, technical knowledge tends to remain embodied in the corporal proficiency of craftsmen and situated in the everyday routines of crafts. This cognitive landscape has been deeply transformed by the development of cognitive and communication media. Through literacy, press, broadcasting and digitalisation, technical knowledge has progressively acquired an autonomous existence. To facilitate conservation and transmission, knowledge has been disembodied from its human custodians and inscribed in material supports that could be stored or transported (be it stone, paper or electromagnetic waves). Through the development of media, an increasing amount of technical skills has been separated from practice and made explicit: information, that is the mediated version of knowledge, has been extracted from informal expertise. According to numerous authors, this process of formalization of technical knowledge constitutes the very essence of modernization. Indeed, at least in western societies, the history of technology can by portrayed as a process of progressive, though not linear or continuous, expansion of formalization.
And yet, no matter how crucial, formalization can not be the deepest source of tension between modern and traditional technological approaches. The reason is pretty straightforward: if there is something on which all historians of communication would agree is that new media are always added to old media and never quite substitute them. Besides, it has often been noted that the introduction of new and more formal media is always accompanied by the opening of novel opportunities of informal interactions. Virtual communities are the latest example of this effect, surely not the only one. **Formal languages always end up producing informal relationships.** This strict connection between formal and informal has been clearly revealed in the field of modern technology by the findings of disciplines such as knowledge management and knowledge engineering. No matter how advanced and formalized can a technological sector become, innovation will always sprout from informal knowledge shared through informal interactions. Every technology – modern as well as traditional – generates and is generated by an informal community of practice.

It is therefore impossible to charge formalisation for the marginalisation of traditional techniques. To be sure, these techniques are definitely less formalised that their modern equivalent, but this is a difference much more than an opposition. **Formalisation complements but does not exclude informal or traditional knowledge.** The source of the tension between modern and traditional technologies is thus to be searched elsewhere and precisely in the second divergence between modern and traditional technological styles.

We will approach the second difference between modern and traditional technological collectives through a short metaphoric detour. Describing the growth of tropical rainforests, the French botanist Patrick Blanc (2002) provides an interesting metaphor to portray the development of technological systems. According to Blanc, in tropical ecosystems two radically opposite strategies can be observed. The first strategy is that of the most classical hobbesian war for resources. Entering this war, plants are compelled by the logic of competition to grow as fast and high as possible in order to capitalize the maximum of sunlight at the expenses of their biological rivals. The result is formation of the canopy layer, that is the rainforest as seen from aerial photos: a thick cover of leaves sustained by huge architecture of branches and trunks. However, some forty meters below, a radically different logic is at play. At the forest floor, where only the 2% of sunlight percolates, wrestling for resources doesn’t make much sense. Surviving in conditions of such an energetic scarcity, requires diversification and adaptation much more than competition. And here is where nature gets really creative, at least in terms of biodiversity. Where the fight for
primacy loosens up, biological diversity emerges as a key strategy for optimizing the limited availability of resources.

A similar dichotomy can be observed in the development of technology. Before the Industrial Revolution, the main drive for technological innovation has always been the necessity to cope with poor or hostile environments. From shelter architecture to food processing, from field cultivating to clothes manufacturing, in traditional techniques all around the world, the most ingenious innovations have always been inspired by environmental constraints. As the humble flora that grows in the perennial shadows of tropical forests, traditional communities have secured their survival through an incessant effort of technical adaptation.

With the advent of industrialization an opposite technological strategy took the lead. By harnessing the combustion of fossil fuels and thereby providing a source of cheap and universally convertible energy, the Industrial Revolution reversed the very relation between resources and growth. No longer were resources the foundation and boundary of growth, but growth itself became the condition to dominate new resources. From that moment on, the technological dilemma ceased to be “how can we diversify technology to adapt to limited resources” and became “how can we harness new resources to sustain technological expansion”. As growing faster and higher became the main evolutionary strategy, technological diversity was replaced by a competition not dissimilar from that of the canopy layer. The chain of industrial growth was irreversibly set in motion.

To be sure, there is nothing metaphysical about this transition. As Bruno Latour showed in Nous n’avons jamais été modernes (1991), there is no such a thing as ‘Great Wall’ to separate modern collectives from their traditional ancestors. All transformations brought by industrialization may in fact have stem from an apparently minor shift from adaptation to growth. Clearly, we are not understating the importance of industrialization. On the contrary, what we are trying to bring to light is that modern obsession for social, economical and technical growth does have its consequences. The first of these is that modern collectives have indeed grown and are still growing at an incredible pace. Contemporary collectives have spanned through space and time and reached dimensions utterly unthinkable for traditional communities. Not only modern assemblies gather a larger number of actors than any previous collective, but they also mobilize and enlist actors that had never been involved in social life before. Microbes, cells, atoms as well as satellites, planets and galaxies, from highest layers of atmosphere to lowest layer of the earth crust, from the oceanic abysses to the most remote corners of the globe, there seems to be no limits to the expansionistic impetus of modernity.
Sometimes this expansion concerned unexplored territories, as in the case of atomic or comic spheres. Often however, the extension of modernity occurred at the expenses of traditional communities. Land, natural resources, energetic sources, knowledge, through successive waves of colonization, modern systems have progressively expropriated traditional groups of their most precious assets. Technology played a key role in this expansive process, as it provided the logistic infrastructure necessary to control the expanding dominions of modernity. This role is obviously evident in military weaponry and war techniques, but it can be observed in any technical sector. Wherever modern technologies were introduced to substitute older ones, traditional communities were undermined and eventually supplanted by modern collectives. It was by tying vast network of survey and transmission (see Gras, 1993) and establishing huge centers of calculations and decisions (see Latour, 1987) that industrial societies were able to impose their rule against the resistance of all other collectives.

Given the major role played by technologies in supporting modern colonialism, it is not surprising that a strong conflict has progressively aroused between traditional and modern techniques. It is largely because of this clash between the expansive attitude of industrial systems and the preservation instinct of traditional communities that the two technological approaches have been opposed. However, though founded on solid historical bases, such opposition may be not theoretically insuperable. Unlike formalization, colonialism doesn’t appear as an intrinsic feature of modern technologies. While it is impossible to envision modern technical collectives without formalization, a deceleration of their expansive pressure seems possible and even desirable as industrial systems grow more and more unsustainable.

Attributing the tradition/modernity distinction to an historical divergence rather than to an inherent opposition is someway comforting, because it does not rule out the possibility of a rethink. If the tension between modern and traditional approaches derives from a different attitude towards growth, then integration is not hopeless. On the contrary, if freed from expanding temptations, modern formalization can even help to revitalize traditional innovation within contemporary societies.

In any case, this is the intention of an increasing number of hybridization initiatives (see the paragraph Case Studies). These technological enterprises challenge the classical tradition/modernity distinction by reversing the relationship between modern and traditional collectives. Instead of subordinate traditional resources to the control of modern organizations, these projects are meant to use the development of modern technology to assist traditional communities. At present, it is still impossible to say whether these initiatives will succeed or fail in winning the inertia of
modern societies and slow down their growth. Nonetheless, such hybridization effort represents an extraordinary experiment technology and constitutes the very object of the TIRC investigation.

Disciplinary Tools – combining human and natural sciences

As the previous paragraphs may have suggested, the TIRC project cannot be easily ascribed to any specific scientific discipline. On the contrary, a research program devoted to traditional innovation has to be developed by an interdisciplinary team. The very notion of ‘traditional innovation’ calls for a broad multidisciplinarity as it dissolves the classical distinction between human sciences and natural sciences.

As long as the opposition modern/traditional is maintained, technology appears as an easily divisible field. Modern technologies are to be entrusted to physicians, chemists and, above all, engineers, while traditional techniques can be left to anthropologists, psychologists and sociologists. The argument is pretty straightforward. The study of modern technologies should be reserved to more formalized disciplines (namely, natural sciences), because the progress of such technologies is ultimately driven by formal efficiency calculations. The study of traditional technologies, on the other hand, should be attributed to less formalized disciplines (namely, human sciences), because the course vicissitudes of such technologies is largely influence by cultural (and therefore non-formal) forces. This argument is often supported by an implicit judgment of value, which can go in either sense: we can praise modern technologies and natural sciences for their rigor and dismiss traditional technologies and humans sciences as approximate and subjective, or we can value the richness of traditional technologies and humans sciences and criticize modern technologies and natural sciences for being cold and reductionist. In both cases the distinction seems to hold more for its polemic force than for its explicative potential.

As soon as the modernity/tradition distinction is questioned, this neat division of scientific labor turns out to be extremely fragile. This fragility has remarkably been revealed by the findings of the so-called ‘science studies’. By applying socio-anthropological methodologies to the observation of modern laboratories, such studies have proved that contemporary technoscientific systems are as crowded with social and cultural agents as their traditional counterparts. Which is not surprising, if we bear in mind what we have claimed in previous paragraphs (hypotheses framework), namely that formalization always entails new informal relationships. Accordingly, science studies have successfully contested the privileged association between modern technologies and formal sciences. Along the same line, The TIRC research project is based on the idea that every technological artifact, no matter if modern or traditional, finds its meaning...
only when inscribed in a wider network of human and natural actors. The contribution of human science, especially the less formalized, will then be indispensable for the TIRC.

This is, however, only half of the story. Indeed, not only will the TIRC observe formal technologies through informal methodologies, but it will also experiment with the opposite combination: investigating traditional informal techniques by means of highly formalized analyses. A similar attempt has already been tried by a newly founded discipline called ‘interaction design’. This discipline was recently proposed as an alternative approach to the design of modern artifacts. Building on the acknowledgment that formal technologies always produce informal relations, interaction design refuses the idea of reducing technical design to an efficiency calculation and claims that innovation should always take into account its informal consequences (see De Michelis, 2001). Besides, what is most interesting about this approach is that it wasn’t born in an artistic or humanistic setting, but it developed in the highly formalized context of engineering and computer science. Interaction design is the living demonstration that extremely formalized methodologies can be used to manage the informal side of technology. Up to now, this approach has been applied mostly to modern technologies. Yet, there is no reason for not extending this method to traditional innovation.

Mixing formal and informal methodologies, natural and human sciences, the TIRC will offer the same treatment to modern and traditional technologies. If we want to investigate and facilitate the hybridization of modern and traditional technological style, we will have to be ready to hybridize our own methodology as well. This will entail a huge effort of interdisciplinarity, but traditional innovation is a complex problem and complex problems never admit simple solutions.

Case Studies and Design Themes – experimenting hybridization

In the previous paragraphs, we claimed that the relation between modernity and tradition is to be studied in vivo through the observation of the hybridization attempts that are emerging in a growing number of technological sectors. In this paragraph, we will describe some of these hybrids putting forward some possible research trails for the TIRC. Other research trails may be defined by those who adhere to TIRC.

Organizing modernity: mass distribution and traditional production of food (research candidate: Tommaso Venturini).
The first example of hybridization is related with the production of food. Obviously, many other technical fields could have been chosen. Still, we believe that food technologies are a good prototype for at least two reasons. First, these techniques, having being around for as much as 10,000 years and having been intensely practiced by almost all non-nomadic human group, offer much material for the analysis. Second, when it comes to food, many people share the feeling that may be proceeding too fast and that something important may get lost on the road to modernity.

The first example we will introduce concerns the market of food distribution. In contemporary societies, food is rarely consumed by the people that produce it. More often, producers and consumers stands as separated actors and their relationships are mediated by a number of intermediaries, which constitute the modern food market. In the last fifty years, the articulation of this market has been drastically reduced by the emergence of a dominant player: the network of supermarkets and distribution groups. The overwhelming success of such ‘distribution industry’ is largely due to its perfect adequacy to contemporary societies. Unfortunately, the very reasons of this success (the vocation for scale economies, the logistic perfectionism, the price competitiveness and son on) turned out difficult to conciliate with the rhythms of traditional food production. Too often, therefore, the expansion of modern distribution occurred at the expense of traditional food systems.

However, according to our hypotheses, this outcome is by no means definitive: modern distribution could be reconciled with traditional production if the focus is shifted from growth to diversification. This idea may seem naïve and yet there are companies that are working in this direction. A particularly interesting example is Eataly Srl (www.eataly.it). Eataly is a newly founded distribution company whose objective is precisely to use most advanced logistic tools to provide to modern consumers with traditional food quality. What is most remarkable, this project refuse to bind traditional products to niche markets and is firmly intentioned to challenge mainstream supermarkets on their own ground. Far from addressing to a handful of happy few, Eataly is meant to build a real network of mass distribution, competitive in offer and prices. Will it succeed? Time will say. In any case, its example demonstrates that the opposition between modern and traditional technological styles can no longer be taken for granted.

The issues we have discussed above can also be developed along a different line of research, focusing on the design of the technology that is needed to make a system distributing worldwide traditional products (like Eataly aims to become) effective and efficient. Without a computer-based system supporting the complex logistics of a distribution chain combining world-wide distribution of some goods (produced in large amounts by a company) with local distribution of other products produced by a geographically distributed set of small companies sharing a high degree of quality
and a clear place-dependency, a company like Eataly can not succeed. The design of a platform for such a system will offer to its users not only efficient and effective logistics but also a way for defining the criteria through which combining global and local distribution in accordance with some values and some policy criteria. The participation of Eataly in such experimentation can offer a unique occasion for evaluating in a real case the features of such a platform.

Networks of Innovation: Agricultural Distribution Systems and the Urban Pastoral

(research candidate: David Schleifer)

Community supported agriculture (CSA) is a system in which urbanites pay a lump sum upfront to a local farmer in the winter. In return, they receive a weekly share of fresh fruits and vegetables through the summer and fall. There are more than 50 individual CSAs in the five boroughs of New York City, each supporting a specific local farm. Given the current explosion of discourse about local, seasonal, organic food in United States media, CSAs have an obvious appeal to urbanites with a specific type of cultural capital. Behind that pastoral image, how are CSAs established, coordinated, and managed? How are urbanites and farmers enrolled into these networks? What perceptions of farms and farming inform urbanites’ decisions to enroll in CSAs? Given the identification of so-called "food deserts" in many cities, where little fresh produce is commercially available but diabetes is widespread, do residents of low-income neighborhoods access CSAs and how do they construe their relationships with the food?

The distribution of agricultural products through CSAs may seem to only involve institutional innovations. However, farmers often must completely change their traditional crop choices, harvest timing, packaging, and human resource management in order to meet the tastes and schedules of CSAs. While the stated goal of CSAs is to support struggling family farms, which farms are most able to reorient their production towards the CSA distribution system and what challenges do they face in doing so? Do CSA farmers become dependent on CSAs and therefore become unable to produce for other types of markets? How are traditional small-scale agriculture networks destabilized, reinforced or changed by these distribution networks?

CSAs seem positioned to address a constellation of concerns including agribusiness, biotechnology, supermarket monopolies and the loss of small family farms in America. They may appeal to urbanites as a means to reduce their food’s carbon footprint, and to forge connections among their families and the land which surrounds their cities. Advocates for the poor may see CSAs as means to combat overweight, under-nutrition and the discontinuation of working class and immigrant culinary traditions. For those who see the American food system as intractably
broken, CSAs seem to offer a means of stepping outside of that system. But what institutional and technological innovations allow these new systems to function or fail, and how do urbanites and farmers create new traditions of urban and periurban growing, shopping and eating?

As for the former project, even in this case it is interesting to design the technological infrastructure supporting CSA systems. In order to avoid the reduction of CSAs to consumer networks, it is important in fact to help them to become an augmented community, combining occasional local experiences at the country site with virtual relations during the whole year.

The invention of new technologies: representations of technology in the Italian pop press

(research candidate: Oscar Ricci).

Over the last few years, there have been several popular techno-scientific magazines published (Jack, T3), providing a number of representations of technology. These representations tend to portray new technology as something unique and revolutionary, and they strictly link technology with the lifestyle of the consumer. Apart from the popular techno-scientific magazines, there have also been several “natural magazines” published (Natura style, Salute naturale, Ok la salute prima di tutto), often representing new technology as a menace, suggesting that the only “natural” lifestyle is a life without technology at all, or at least using traditional technology only.

Studying the representations of technology in the “natural” and in the “technological” magazines can be very interesting because these magazines are one of the most important places where the oppositions between modern and traditional technology are portrayed. The popular magazines constitute a major source of information about technology for the general and lay public and provide an effective agenda within which most people are able to make sense of technology (Dimopoulos and Koulaidis 2002). Therefore the popular press emerges as a critical field of technological communication: researchers, private companies and public sponsors are involved in the use of the media as a tool of public persuasion, while critics and activists in search of visibility depend on the media to mobilize public opinion (O’Mahony and Schäfer 2005). The sole descriptions of laboratories or individual careers cannot explain the underlying political support for science and technology, as they lack attention to the influence exerted by citizens on governmental policies on technology (Lafollette 1990).

The mass media communication addresses a mass public sphere and hence it must use abstract and symbolical cultural codes that can be understood by a large and diverse audience. These cultural codes can be called “frames”: that is, generalized standpoints, contents and styles which provide the raw materials of mediated communication. This project deploys frame analysis (Entman 1993, Scheuulele 1999) to reconstruct these codes. The most important Italian magazines
will be analyzed in order to find out how they frame and represent new technologies, and how they help to establish a distinction between traditional and new technology.

The traditional shift of agroecology

Agroecology, namely the science of sustainable agricultural systems, is a long established scientific discipline. In the last few years, however, such discipline has undergone a unexpected turn toward traditional techniques. An increasing number of agroecologists has begun to recognize that, when sustainability is taken into account, several traditional agricultural techniques are way more sophisticated and advanced that modern ones (see Miguel Altieri, 1995). This superiority has been officially acknowledged by the FAO through the Globally Important Agricultural Heritage Systems Program (www.fao.org/sd/giahs/). In line with what the differentiating strategy of traditional technology, GIAHS were developed to handle “geographic isolation, fragile ecosystems, political marginalisation, limited natural resources or extreme climatic conditions”. In many cases, these systems were so successful that not only were they able to guarantee “the sustained provision of multiple goods and services, food and livelihood security and quality of life” but they also resulted in “outstanding aesthetic beauty, maintenance of globally significant agricultural biodiversity, resilient ecosystems and valuable cultural inheritance”. The renewed interest of these systems has turned the agenda of agroecology upside down. Nowadays, the challenge of agroecology is no longer amending modern agriculture to make it more sustainable, but transforming traditional agricultural technologies so that they could fit the need of modern societies without loosing their amazing efficiency.

The aesthetic of tradition: body care between grandmother’s advices and plastic surgery

The body care is one of the most interesting fields where it is possible to analyze the distinction between tradition and modern technology. Several body care magazines try to give the best advice to maintain body in a perfect shape, some of them suggesting the use of modern technology (plastic surgery, “technological” gym) while others propose the use of ancients and traditional methods (healthy food, natural lifestyle). Studying this kind of magazines is a non ordinary way to discover how the opposition between traditional and new technologies is portrayed, even in such fringed and bounded field (Meredith 2004, Darling-Wolfe 1997). The beauty and body care magazines, as well as other popular magazines, constitute a major source of information about technology for the general and lay public and provide an effective agenda within which most people are able to make sense of technology (Dimopoulos and Koulaidis 2002).
This project consists in a media frame analysis (Altheide 1996) of the most important Italian magazines about beauty and body care: discourse analysis will be used to identify the different textual frames producing the discourse on new and traditional technologies related with body care.

References

Altheide, D. L.

Altieri, M.

Darling-Wolfe, F.

Dimopoulos, K. and Koulaidis, V.

De Michelis, G.

Entman, R.

Gras, A.

LaFollette, M.

Latour, B.

Latour, B.

Meredith, J.
O'Mahony, P. and Schäfer, M.

Scheufele, D.